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Review Article 
Ion Pair Potentials for Alkali Halides and Some 
Applications to Liquids and Defect Studies 

M. DlXONt 
Department of Theoretical Physics, University of Oxford, 
7, Keble Road, Oxford, OX1 3NP. England 

and 

C. S.  N. MURTHY 

Department of Chemistry, Royal Hollo wa y College, Englefield Green, Egham, 
Surrey, TW20 OEX, England. 

(Received June I ,  1982) 

We review the basis on which interionic potentials for alkali halides are obtained. We find that 
the sizes of the van der Waals terms are known poorly and that the polarizable ion models lack 
the necessary thermodynamic corrections, however small they may be, to fit low temperature 
properties of the solid. Although the quantum statistical calculations indicated some damping 
of van der Waals interactions due to ionic overlap, a systematic study of the basic and modi- 
fied approaches shows them to be unsatisfactory. 

Studies of the liquid structure and point defect properties are reported for a limited range of 
salts. It is shown that at longer wavelength the charge charge dynamical structure factor is sub- 
stantially changed by the inclusion of ionic polarization in the interionic potential. Ionic 
polarizability produces a relatively small change in the structure. The polarizable ion models 
give encouraging values for the cation and anion vacancy migration energies compared with the 
values derived from recent experimental studies of the crystal. 

1 INTRODUCTION 

It is now well established that molecular dynamics can provide valuable 
insights into the physical processes in condensed matter. While the form- 
alism of statistical mechanics provides a well defined procedure for studying 
condensed matter, the system still has to be defined in terms of a set of 

t Attached to Theoretical Physics Division, AERE Harwell, Oxon, OX1 1 ORA England. 
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84 M. DIXON AND C. S. N. MURTHY 

interacting particles. In limiting cases such as perfect crystals in the harmonic 
approximation, most of the basic physics is well established. Anharmonic 
and disordered systems (especially alloys ') have been studied using per- 
turbation theory based on perfect harmonic crystal properties. But it is pre- 
cisely when the harmonic model is least satisfactory as a starting point, or 
when there is substantial structural disorder, that molecular dynamics is 
especially effective. However, it is evident that use of molecular dynamics 
requires that the interaction between particles is known as a function of 
separation. The simulation can be only as good as the potential is reliable. 

In what follows we shall be concerned with alkali halides in the condensed 
state. A large part of the interaction then arises from the electrostatic poten- 
tial which is known exactly. The short range part representing the remaining 
terms in the potential has to be determined. There are three classes of models 
of interionic potentials which have been proposed : 

(a) rigid ion models which consist of a point Coulombic interaction plus a 
short range repulsion which arises from the overlap of the electron density on 
different ions. 

(b) point polarizable ion models which extend the rigid ion model by in- 
cluding a constant electronic polarizability. 

(c) polarizable ion models which couple together the electronic and short 
range polarization. These models include some many body forces. 

In this review we will discuss briefly (1) the underlying physical concepts 
beneath each model (2) the limitations of each model (3) show how the 
parameters of models have been derived and (4) the use of the models in 
simulations. We propose to restrict ourselves to the alkali halides since 
these are generally regarded as being the test bed for ionic models. Much 
of the work on alkali halides has been covered already in the extensive 
review by Sangster and Dixon' and we shall therefore emphasise develop- 
ments since that review. There is now a Handbook of Interatomic Potentials 
compiled by Stoneham3 from contributed potentials, although these do not 
include rigid ion potentials. 

2 ELECTROSTATIC INTERACTION 

2.1 Point Coulombic ion models 

The simplest form for the electrostatic interaction is for each ion to have 
an integer charge located at its centre of mass; the ions are treated as point 
ions. This form appears to be reasonable for the simulation of structures, 
but is known to be completely inadequate for dynamical properties since 
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ION PAIR POTENTIALS FOR ALKALI HALIDES 85 

Reduced wave vector coordinate 5 

FIGURE 1 Comparison of Phonon Dispersion Curve for NaI: 0 0 experiment; . . . . rigid 
ion model; -.-.rigid ion + point dipole; --- shell model; __ breathing shell model. 

it gives the high frequency dielectric constant E ,  = 1. However, a point 
Coulombic ion model should be regarded as the essential starting point 
for computer simulation studies4 The model fails for dynamical properties 
because the Coulombic field of one ion polarizes the charge distribution on 
other ions and this substantially modifies the dynamical properties of the 
ions (see Figure 1). Such a model would also be unsuitable for static defect 
calculations. 

2.2 Point Polarizable ion models 

It is possible to go beyond point Coulombic ion models by giving each ion 
a dipole moment which is proportional to the effective field acting on it; 
the constant of proportionality being the polarizability of the ion. Lyddane 
and Herzfeld’ showed that the point polarizable ion models led to a very 
poor description of the dynamics of the regular crystal and gave rise to a 
structural instability at certain wave vectors as shown by Woods et aL6 
(see Figure 1). Faux and Lidiard’ reported that this class of model was 
unsuitable for defect calculations because the polarization of each ion 
depends not only on the electrostatic forces but also on the short range 
forces; a point first suggested by Lyddane and Hertzfeld.’ 
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86 M. DIXON AND C. S. N. MURTHY 

The omission of the latter consistently underestimates the Schottky 
defect formation energy by about 25% and leads to a static dielectric con- 
stant which is over estimated in defect structures. Phenomenalogically 
this situation has been improved either by choosing’ the repulsive potential 
or adopting’ model polarizabilities to fit the static dielectric constant. 

2.3 Shell models 

Dick and Overhauser” proposed this class of shell models to couple the 
electrostatic forces to the short range forces, see Figure 2. The ion is modelled 
by a charged massless shell through which short range forces act. The shell 
is coupled through a harmonic spring to a charged core which has the 
mass of the ion. In order to reproduce the experimental dispersion curves 
for the lattice vibrations as closely as possible (see Figure 1 and Ref. l l) ,  
an extra degree of freedom allowing the deformation of the shells has been 
introduced. Further Bilz et al.” have incorporated the overlap-charge 
polarization effects centred at the positive ion corresponding to the intro- 
duction of ‘pseudo-deformabilities’ for the positive ion. However, we 
confine ourselves in this review to the rigid shell models. The relation 
between the shell parameters and the dielectric constants has been given 
by Cowley.’ 

Taking 

and 

Cation Anion 
net charge +1 net charge -1 

Core charge 

Charge 
Charge Y, 

-Core charge 
-lY,+1, 

FIGURE 2 Shell model. 
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JON PAIR POTENTIALS FOR ALKALI HALIDES 87 

where ro is nearest neighbour lattice distance; 4F(r) is the short range non- 
coulombic part of the potential. 

We define 

and 

Ro = f ( A  + - + 2B+ -) with f = 1 for the NaCl structure and f = 4/3 for 
the CsCl structure. Then extending Peckham’s14 formulation for two 
polarizable ions, we have for the static lattice 

bo Yl y2 Z 
Y1 k, + Ro - R o  RO = 0, 
Y2 -Ro k 2  + Ro -Ro 
l z  Ro -Ro Ro 

and 

= 0, 

where Z is the ionic charge, oo is the transverse optic frequency, c0 is the 
static dielectric constant, and E, is the high frequency dielectric constant. 

We now have three equations in five unknowns for each crystal. The 
short range interactions are coupled to the polarizability through the term 
R ,  appearing in these equations. This is why it is incorrect just to add a 
polarizability term to a point Coulombic ion potential in an ad hoc way.2v15 
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88 M. DlXON AND C. S. N. MURTHY 

We will now follow the solution of these equations recently presented 
by Sangster and co-workers.16 It is assumed that the ions are fully ionic. 
They determine for each ion a set of crystal independent ionic parameters 
yi and kJVby a least squares fit to the rocksalt structure; R ,  is also deter- 
mined for each crystal. 

In adopting a shell model formulation which is valid for static crystal, 
it has been customary to use low temperature dielectric data and we do 
not have an assessment of the extent of the error that this introduces. This 
thermodynamic inconsistency has been recently stressed by Eggenhoffner 
et a/.” Further the different procedures adopted by various 
may lead to unphysical values for the shell model parameters (see Table 7, 
ref. 17). 

It is appropriate to  mention here how the shell model can be implemented 
within a molecular dynamics simulation. The zero mass shells have been 
introduced to account for the experimentally observed high frequency 
dielectric constants of the crystals. These high frequency dielectric constants 
arise from the distortion of the electron density of the ions by high frequency 
electric fields. On time scales appropriate to the molecular dynamics simula- 
tion, the shells may be assumed to relax instantly to experience zero force. 
This is included in the simulation by a simple but very successful algorithm 
because the force constant ki turns out to be very large. A small change in the 
position of a shell produces a much larger change in the force between a 
shell and its own core than in any of the other forces on the shell. Thus the 
following molecular dynamics cycle was used : 

(a) calculate the forces on the cores; 
(b) move cores according to Newton’s equations; 
(c) calculate the force F ,  on each shell and obtain S = 

(d) displace each shell by As = ;F,/k, until S is within the error of the 
calculation of the forces. 

It is found that the least number of iterations was required if the shells 
were initially given the same displacements as their own core. The error in 
the position of the shells can be reduced to around 5 x A. The pro- 
cedure is an order of magnitude more expensive than a corresponding rigid 
ion simulation. If one wishes to run the molecular dynamics with a timestep 
comparable with that of a rigid ion simulation then a scaling of the velocities 
by 1/2000 is necessary to conserve energy rigorously. However, if the time- 
step is halved this scaling is unnecessary. The separation of a shell from its 
core can be as large as 0.25 A. The use of a simple expansion method leads 
to temperature drifting’ which becomes the more severe the greater the 
importance of ion polarizability. 
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ION PAIR POTENTIALS FOR ALKALI HALIDES 89 

3 VAN DER WAALS INTERACTlONt 

It is the time average of the distribution of the electrons in an ion which is 
spherically symmetrical. At any instant there will be distortions in the distri- 
bution around an ion A due to electron correlations in A. These distortions 
will induce a transient dipole in a well separated neighbour B. Similarly 
electron correlations in B will induce a transient dipole moment in A. These 
induced dipoles will induce higher .order multipoles. The interaction be- 
tween these induced moments is usually referred to as the van der Waals 
energy. It is written within the perturbation theory framework as an asymp- 
totic expansion in r - 6 ,  r-’ . . . This expansion breaks down at small r. 
Further, exchange and overlap correlation effects are missing from the van 
der Waals energy as discussed by Tosilg and M ~ r r e l l . ~ ~  

The term quenching is used to indicate that the ions are interacting 
sufficiently strongly that the correlation energy between electrons on different 
ions is overestimated by the r - 6 ,  and r-’ terms. In this region Cohen and 
Pack” have suggested that the following prescription can be used for the 
pair potential, 

Boswarva and Murthy” have estimated. on the basis of quantum stat- 
istical calculations, that for unlike ions in the crystal rQ is about 1.0 r,;  for 
anions rQ is about f i  ro;  for cations quenching appears to be absent. It is 
incorrect to appeal to quenching to equate the van der Waals energy to zero 
for a pair interaction over the whole range.’* 

Now we discuss briefly the methods which have been used to estimate the 
van der Waals coefficients. 

3.1 

Andzelm and Pielaz3 have carried out some ab initio calculations for LiF 
and NaF. However, for the van der Waals coefficients they consider only 
the asymptotic values and do not examine the effect of the overlap of the 
ions on these terms. Consequently no conclusions can be drawn about the 
magnitude of the quenching of this interaction. 

Ab initio quantum mechanical calculations 

t The physical origin of this term involves the polarizability of the ions. In an interionic 
potential this term is not responsive to a high frequency electric field caused by the lattice 
vibrations. Nor does it account for the polarization caused by defects in the crystal. Consequently 
i t  is conventionally included as a rigid model contribution. 
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90 M. DIXON AND C .  S. N. MURTHY 

3.2 Optical absorption experiments 

From knowledge of either the optical density24 or dielectric data” one can 
estimate the van der Waals coefficient Cij. This involves choosing the 
appropriate energy limits for the individual ionic absorptions. In practice 
this choice can be arbitrary because the energies of optical excitations of 
anions and cations overlap. However, even in overlapping cases if the com- 
plete absorption spectrum is available, a composite van der Waals coefficient 
can be obtained. 

The dipole-dipole van der Waals energy of two ions can be written as 

where i, j indicate different ions and where M,, = c b I - ex I a > for 
electron states a and b;  E ,  is energy of electron state a. 

This equation when combined with the absorption coefficient 

where n(E)  is the refractive index, gives 

3 E ~ ( E ) E ~ ( E ’ )  dE dE‘ 
( E  + E‘)L(E)L(E‘) 

N is the density of ion pairs, L(E) is the local field correction and where c2 
is the imaginary part of the dielectric constant of the material. The extent 
to which the local field correction should be used does not appear to have 
been resolved.’ 

3.3 Empirical methods 

It is customary to use London’s perturbation formula26 

3 aicrjEiEj c.. = - 
2 ( E i  + E j )  

where Ei  and E j  are excitation energies corresponding to the strongest 
absorption frequencies. This usage is based on the assumption that all the 
excited states fall in a narrow energy range and that the polarizability is 
expressible in terms of a one level formula which is 

nie’h’ a. = ~- 
I 47c’mE: 
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ION PAIR POTENTIALS FOR ALKALI HALIDES 91 

where ni is the effective number of electrons responsible for the polarization 
and M is the mass of the electron. The arbitrariness of choosing either the 
value of n, or some scale factors to the first exciton peaks to obtain the E, 
gives rise to major uncertainities in the values of Cij  derived from this 
approach. 

An alternative approach is to treat the van der Waals dipole-dipole 
interaction coefficient as an adjustable parameter in the interionic potential 
to be determined from a fitting procedure" or a hybrid of these empirical 
routes.' 

We have reported the dipole-dipole coefficients obtained from the above 
described methods in Table I for ion pairs in LiF, NaF, and NaCl. 

3.4 Neutron scattering experiments 

At long wavelength the r - 6  term in the potential gives rise to a term in k 3  
in the structure factor, 

S2(0) k3.  
n2nA 

S(k) + S(0) + sk2 + - 12k,T 

For a molten alkali halide Rovere et aL2' have shown that 

A = i ( C + +  + C - -  + 2C+-). 

Thus, although one cannot determine the independent values of Cij one 
could determine limits on the composite magnitude. Mitchell et are 
carrying out this experiment for NaCl. These experiments would facilitate 
assessing the estimates from optical data analysis and thus indirectly throw 
some light on the extent of the local field effects. Further they would reflect 
on the credibility of the existing estimates. 

3.5 Summary 

The entries in Table I are remarkable for the range of disagreement shown. 
Comparison of columns 8 and 9 indicate that it is necessary to consider 
the effects of the quenching of these interactions. It should, however, be noted 
when using optical spectra to determine these coefficientsz9 that it seems 
that the separation of the anion and cation valence electron absorptions is 
not completely arbitrary for most of the alkali halides and that there are 
ways to gauge the role of the effective local field. It would be useful to augment 
these estimates and the quenching effects with ab initio calculations. 
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4 SHORT RANGE INTERACTION 

Two main approaches have been developed to determine the short range 
interactions between ions. One takes the crystal as its starting point. The 
other starts from an isolated ion pair applying a simple quantum statistical 
model to the interactions. Of course there have been hybrids of these alter- 
native appkoaches." Each of these approaches is complicated by the un- 
certainty associated with the van der Waals terms which we have just 
discussed since the empirical parameters will be modified by the error 
associated with van der Waals coefficients. 

4.1 Crystal based potentials 

In this approach it has become recent practice to fit the equilibrium con- 
dition of the static lattice to the lattice parameter. The lattice parameter of 
the OK crystal is about 1% larger because of zero point vibrations. This 
confusion leads to only a small error in the compressibility but the error in 
the pressure can be several kilobars. 

A fit to the static dielectric constant E~ of the static crystal is effectively a 
fi t  to the nearest neighbour force constant at r,, since 

Lattice stability requires that the derivative of the static lattice energy 
with respect to the nearest-neighbour distance must be zero for the equi- 
librium spacing. The lattice energy per ion pair for the NaCl structure is 

+ 6@yc-(r) + 6[@yc+($r) + @?'-(&)I NeCl aM Z2eZ 
@ ( r )  = -~ 

r 
with aM = 1.7476. 

The lattice energy per ion pair for the CsCl structure is 

with a t  = 1.7267. 
In each case we have assumed the potentials to be truncated at the second 

nearest neighbour distances. Such a truncation would be appropriate for 
the repulsive part of the potential. Extending the stability condition to 
include the van der Waals long range interaction2, we get 

2 
3 

B+-  + 2B++ + 2B-- = --aM - 
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94 M. DIXON AND C. S. N. MURTHY 

where 

C = 0.5952 = C +  - + 0.1533 ( C -  - + C+ +) 
D" = 0.19427 D, - + 0.0334 (D- - + D, +) 

For the CsCl structure the stability condition is 

2 
3 

B + -  + 2B,+ + 2B--  = - - a h  -- 

where 

C" = 2.7088 C ,  - + 1.02225 (C+ + + C- -) 
D" = 2.9436 D, - + 0.9317 (D+ + + D- -) 

Substitution of numerical values in these expressions shows that the 
stability is determined by the nearest neighbour force constant B+ _. It is 
also seen that the + + and - - interactions occur with the same weight. 
Expressions for the elastic constants of the static crystal in terms of these 
parameters are recorded in Appendix I. 

With the elastic constants also it is seen that the + + and - - interactions 
occur with the same weight. Pair potentials give rise to central forces. These, 
when taken together with the stability condition, require C12 = C44 which 
is unphysical. 

In order to relate any of the experimental quantities to interionic poten- 
tials it is necessary to assume a parametric form for the interactions. For 
the short-range noncoulombic potential, ON', the Born-Huggins-Mayer 
form is often used. It can be written as 

@: = Hijexp(-aijr) - Cijr-6 - Dijr-* 

The repulsive parameters are generally determined by fitting to the 
equation of state of the solid under standard thermodynamic conditions'g* 30 

and this seems to give a f i t  to some of the equilibrium properties at high 
pressures and  temperature^.^' Following the Fumi and Tosi pr~cedure ,~ '  
Boswarva3' has recently recalculated the repulsion parameters for the 
rigid ion model with more recent crystal data at room temperature and 
atmospheric pressure. Interionic potentials of this type have become avail- 
able33-35 for crystals with CsCl structure. 

By contrast to these well established procedures, the polarizable ion 
models adopt the static lattice stability condition for a low temperature 
crystal. In Section 2.3 it was pointed out that the determination of shell 
model and short range potential parameters is not an independent fitting 
procedure. Both fits involve the application of low temperature crystal 
data in a static lattice formulation. 
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The potentials are fitted to the crystal dielectric properties and lattice 
stability and in some cases to the elastic constants. For the underlying 
physical assumptions involved, we refer the reader to the original ’* 
and that by Eggenhoffner et al. 1 7 .  It is important to recall that the fits are 
around the regular crystal sites for all models. 

4.2 

The model consists of a positive nucleus surrounded by a spherically sym- 
metrical electron distribution for which the density is calculated from 
SCF Hartree Fock wavefunctions. No distortion of the separate electronic 
densities is allowed to occur as the two ions interact so the total density is 
the sum of the two ionic densities. The short range interaction energy is 
assumed following W e d e p ~ h l ~ ~  to be 

Potentials based upon the electron density of the ions 

where 

3h2n2 3 
Ekin(r) = - (-)2’3 I Cp513 - (p: /3  + p;/’)J dv 

‘Om 71 Yoverlap 

and 

where the total density p = p1 + p2.  The integral is over the overlap volume 
for the kinetic energy and exchange energies. There then exist a series of 
modifications of this procedure in order to obtain effective pair interactions 
between two isolated ions: 

(a) a density dependent correlation energy is introduced following Gordon 
and Kim,37 

E,L,,, (r ,  < 0.7) = 0.031 1 In Is - 0.048 + 0.0091, In r, - 0.01r, 

ELorr(rs > 10) = -0.438~;’ + 1 . 3 2 ~ ; ~ ’ ~  - 1.47~,-~ - 0.4r,-’12 
and 

where 
4n 

p = -rr,”. 
3 

with interpolation in range 0.7 < I ,  < 10. MurrellZ0 states that this model 
is more successful than one would reasonably expect in the attractive part 
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r / A  

0 025r 

_1) ,~ ,,,. O#'-; 

-0 05 

/ 
f i r o  

4 0 4.25 4.5 L.15 50 1 2 5  

r / A  

(b) 

I I I I 
4 0 4.25 4.5 L.15 50 1 2 5  

r / A  

(b) 

'"'1 RbCI 

4.0 4 25 L.5 475 5.0 5.25 

r / A  

(c) 

FIGURE 3 Comparison of potentials for RbCl: (a) d$'k,; (b) (D:&,. Short range and van der 
Waals: (c) d$&; - Tosi Fumi rigid ion; ------ Sangster, Schroder, and Atwood shell 
model; Catlow, Diller, and Norgett shell model. 

of the potential. However, this is probably fortuitous; for example, the long 
range correlation energy is predicted to be overlap dependent and decays 
rapidly but we know from perturbation theory that that is not the case. In 
addition Murrell pointed out that models which assume no distortion of 
electron density will overestimate the repulsive energy at small r .  
(b) the correct asymptotic form of the dispersion energy is added and the 
exchange energy is modified to remove the self energy. 
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(c) scaling factors for the kinetic and exchange energy terms have been 
determined so as to produce the correct values of the corresponding terms 
in an isolated atom, isoelectronic with the interaction of interest. 

Boswarva and Murthy3* have derived these potentials and assessed 
them using the lattice energy, the equilibrium distance, and the Smith’s 
stiffness parameter 

r - @fC(r) 
dr r=ro 

5 LIQUID STRUCTURE AND DYNAMICS 

In this section we shall focus on the comparison between rigid ion and shell 
model potentials used in the simulation of ionic melts. The potentials used 
in this section are given in the papers referred to. The simulations of NaI 
by Dixon and Sangster3’ showed a clear structural difference between the 
polarizable ion model and the rigid ion model; this was confirmed by their 
work on NaC1.40 In each case the simulations predicted marked differences 
between the ionic distribution functions g+ +(r)  and g-  -(r). Comparison 
with the experimental neutron scattering data of Edwards et showed 
that for NaCl the polarizable ion model was in better accord with experiment. 
Mitchell et ~ 1 . ~ ’  then performed a similar experiment on RbCl. We show 
in Figure 4 a comparison between the simulations of Dixon and S a n g ~ t e r ~ ~  
and that experiment. 

We may summarize the comparison as follows: 

(a) The overall agreement between the experimental peak heights and 
positions and those found by simulation is good. 

(b) There is some disagreement between simulation and experiment over 
several details: (1) the width of the main peak of g+ - ( r ) ;  (2) the deep well in 
the experimental g+ - ( r )  at 5.2A; (3) the amplitude of oscillation of g+ + ( r )  
and g- - (r) .  

(c) The agreement between the rigid ion model and the polarizable ion 
model for the ion pair distributionfunctions is so close that it would appear 
to be unnecessary to use a polarizable model for situations in which both 
ions have considerable polarizabilities since these appear to neutralize each 
other. 
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Dixon and S a n g ~ t e r ~ ~  reported quite good agreement between the two 
models for both the velocity and the force autocorrelation functions. For 
each autocorrelation the rigid ion model produced a function which oscil- 
lated with a slightly higher frequency and which was of slightly stronger 
intensity. The main effect on the single particle dynamics was seen to come 
through the increased diffusion coefficients. Recently D i ~ o n ~ ~  has calculated 
the quasi-electric neutron scattering spectrum for molten NaI. That work 
shows that the lower diffusion constant for the rigid ion model causes a 
much higher central peak by enhancing the incoherent scattering terms. 
Overall the effects of ionic polarization on the mass and number density 
auto-correlation functions. are relatively small. We show in Figure 5 the 

-1 1 

t/1Oi2S wllO’z rad s-’ 
Rigid ion model 

(a 1 - g:0.292ti 
- - - q = 0.876 t-’ 
...._.. q 1.168A-l 

-1 
0 0.2 0.4 0.6 0.8 

t I 1a12 s W / I O ‘ ~  rad s-’ 
Pdarizable ion model 

(b) 

FIGURE 5 
molten NaI. Temperature is circa 1000 K. 

Charge density auto-correlation function and dynamical structure factor for 
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charge density autocorrelation function FQQ(q,t)  for several wavevectors. 
The FQQ(q, t) show substantially different behaviour for the two models; 
the rigid ion model has oscillations which are both much stronger in intensity 
and shorter in time. For both models at low q the melt supports charge 
density oscillations. Increasing q results in a damping of the oscillations 
and a lowering of their frequency. There is then a radical change in the 
characteristics of FQQ(qy t)  as we approach the peak in the structure factor 
FQQ(q, t = 0). The oscillations disappear and the half width at half maximum 
height becomes comparable with those of the mass and number density 
auto-correlation functions. Fourier transforming FQQ(qy t )  in conjunction 
with a window function gives the dynamical structure factors, SQQ(qo).  
The sQQ(q,  o) emphasise the points we have already made about the FQQ(q, t). 

From the work on NaI we can formulate three tentative conclusions on 
the effect of ionic polarizability on the dynamics of the melt. 

(a) the inclusion of ionic polarizability into a simulation of the melt 
leads to a substantial modification of the charge density fluctuations for low 
q values. 

(b) the charge density fluctuations for higher 4, and the mass and number 
density fluctuations for all q are relatively unaffected by ionic polarizability. 

(c) ionic polarizability increases the diffusion coefficients and hence 
reduces the intensity of the incoherent contribution to the central peak of the 
quasi-elastic neutron scattering function. 

6 DEFECT CALCULATIONS 

In order to obtain information on the interionic potentials at distances 
other than the regular crystal distances it may be expected that defect 
calculations of the type performed with standard computer packages like 
“HADES”4s may be helpful. An earlier extensive review by Barr and 
Lidiard46 deals with the experimental and theoretical studies of point 
defects in ionic crystals. It has been known for some time that the point- 
polarizable ion models used in defect calculations underestimate the 
Schottky defect formation energies (h,) and yield unrealistic values for the 
activation energies of cation (Ah,) and anion (Ah,) vacancies. However, the 
trend for the relative mobilities of cation and anion vacancies is correctly 
predicted. This situation has been partially remedied’.’ by adopting a fit 
to the static dielectric constant of the crystal which gets overestimated in 
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TABLE 2 

Vacancy formation and activation energies 

101 

Defect 
energies 

Solid (ev) 

Expt. 
Ref. 

(47-49) 

2.44 
0.69 
0.77 
2.00 
0.58 
0.77 

2.54, 2.50 
0.73, 0.68 
0.85, 0.85 

Theoretical estimates 
C D N I  CDN11 SD SA 

Ref. 50 

2.32 2.54 
0.67 9.66 
0.72 0.71 
1.71 2.14 
0.61 0.57 
0.67 0.68 
2.50 2.56 
0.67 0.70 
0.69 0.69 

Ref. 51 

2.25 2.30 
0.81 0.70 
1.16 0.92 

1.98 
- 0.61 
- 0.79 

2.33 2.54 
0.88 0.73 
0.92 0.82 

- 

the defect structures. The two modified versions of the point polarisable 
models used in defect calculations798 discussed in section 2.2 give rise to 
h, values in reasonable agreement with experiment. 

We show in Table 11, the formation (h,) and migration (Ahc and Aha) 
energies for NaCl, NaI and KCI for which reasonably good experimental 
ana ly~es~’-~’  involving both ionic conductivity and diffusion measure- 
ments are available. These energies are compared with the theoretical 
 estimate^^'-'^ for the class of polarizable ion models proposed for the 
family of NaC1-type alkali halides. The activation energies (Ahc and Ah,) 
appear to be quite sensitive to the details of the interaction potential but 
the agreement between the limited number of recent extensive combined 
measurements and theoretical estimates is encouraging. For the heavier 
alkali halides, computed motional energies for the cation and anion vacan- 
cies are nearly equal for all the models and the spread of the experimental 
values is too large (see Table I1 in Ref. 51) to allow reliable conclusions to 
be drawn. There is thus a need for systematic experimental investigation 
for a majority of the salts in the family of alkali halides. 

7 CONCLUSIONS 

We restrict our discussion to sets of interionic potentials which have been 
constructed from fits over the family of alkali halides. Apart from the Fumi 
Tosi potentials3’ there is the thermodynamic inconsistency of using low 
temperature crystal data in static lattice calculations. The uncertainties 
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in the van der Waals coefficients are expected to affect all potentials. The 
{@,!(r) + cD;?”(r)) = @F(r) RbCl are shown in Figure 3 to illustrate the 
differences between the potentials. There are large discrepancies between 
the potentials, particularly for like ion interactions. Eggenhoffner et ~ 1 . ’ ~  
discuss the underlying physical approximations of these and other models. 

Sangster et ~ 1 . ’ ~  have shown that it is possible to derive reasonably good 
shell model parameters which are independent of the particular environment 
in which the ion is found. Although Verma and Singh52 have studied many 
body effects within the shell model formulation and Murrell et ~ 1 . ’ ~  have 
carried out quantum mechanical calculations of them in LiF, there remains 
the need for further investigation of many body effects. Singh has just 
completed an extensive review of many body effects in binary ionic solids.54 

Boswarva and Murthy3* have shown that the lattice parameter, predicted 
by various quantum statistical calculations is in error by about 10%. We 
believe this is far too large to be accepted for use in simulation work. Part 
of this is certainly due to the failure to include the electrostatic field in 
calculating ion densities. Using shell models, Mackrodt and Stewart 
have demonstrated the importance for electrostatic fields in calculating the 
ion densities. Strictly one has to allow for the deformations of the free ion 
electron densities by the total crystal field and a self-consistent treatment 
in p( r )  has to be carried out. Work is in p r~gres s ’~  using Kohn-Sham 
density functional method for the ionic deformations in alkali halides. 

Eggenhoffner et u1.” have made a detailed assessment concerning the 
quality of the predicted or fitted equilibrium properties at low temperatures 
for the various polarizable ion potentials. Here we discuss briefly point 
defect energetics, structure and dynamics of liquids. Schottky defect form- 
ation energies are in reasonably good agreement with experiment and the 
activation energies of vacancies appear to be satisfactory for a few ionic 
solids. 

The changes in the structure of the liquid caused by ionic polarizability 
are relatively small. Preliminary work on molten NaI suggests that the 
effect of ionic polarizability is seen primarily in the diffusion coefficients 
and the long wave length charge density fluctuations. 

In order that confidence can be placed in the details of an interionic 
potential and properties obtained by simulation we believe that quantum 
mechanical calculations should be carried out to derive some potentials in 
crystals from first principles. Since the gross characteristics of ionic systems 
are dominated by the Coulombic interactions it is to be expected that these 
will still be obtained with the present empirical potentials but that more 
sensitive properties will not. In particular, there is need for reliable inform- 
ation on more disordered states and defect structures to probe other parts 
of the potential than the regular lattice distances. 
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Appendix 1 

ELASTIC CONSTANTS FOR NaCl A N D  CsCl STRUCTURES 

The static elastic constants for the NaCl lattice within the nondeformable 
shell r n ~ d e l ' ~ . ~  can be written as 

e2 VI I 

vro V 
CI1 = - [ & A + -  + A + +  + A _ -  + B - -  + B + + )  - 2.556042'1 - - 

e2 v, 2 

Vr0 V 
C 1 ~ = - - - [ ~ A - -  + A + +  -5B-- -5B++ -2B+-)+0.11298Z2] -- 

e2 v44 

Vr0 V C44 = - [32B+ - + A -  - + A +  + + 3 8 -  - + 3 8 ,  +) + 1.27802Z2] - - 
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with 

V,, = ro6  [3.4759C+ - + 1.3831(C+ + + C- -)] 
+ r i a  [1.31620+ - + 0.4353(0+ + + D- -)] 

+ r,8[1.4784D+- + 1.0498(0++ + D--)] 
V,, = r o 6  [3.6171C+ - + 0.6881(C+ + + C- -)] 

V4, = r o 6  [1.2367C+- + O.O747(C++ + C--)] 
+ ro8[0.7016D+- + 0.0162(0++ + D--)] 

The analgous expressions for the CsCl are: 

c1, =-[&l+- e2 +2B+-)++((A--  + A + + ) +  1.401792~1- - v11 
Vr0 V 

e2 v12 CI2 = -[&I+ - - 4B+ -) - 8 B -  - + B+ +) - 1.37935221 - - 
Vr0 V 

e2 v44 C44=-[&(A+- + 2 B + - ) + g B - -  +B++)-0.70089Z2] -- 
Vr0 V 

with 

105 

V,, = ro6 [0.2187C+- + 0.1191(C++ + C - - ) ]  
+ r i a  [O.O291D+ - + O.O199(D+ + + D- -)] 

V,, = ro6[0.1270C+- + 0.1093(C++ + C--)] 
+ ro8 [O.O139D+ - + O.O171(D+ + + D- -)] 

V4, = y o 6  [O.O22OC+- + O.O343(C++ + C--)] 
+ r i a  [O.O036D+- + 0.0073(0++ + D--)] 

Appendix 2 

SOME QUANTUM MECHANICAL CALCULATIONS 

A2.1 Diatomic molecules 

Brumer and Karplus5’ have shown that a consistent perturbation treatment 
which includes terms of second order in the potential and second order in 
the overlap leads to a pair potential which has been referred to as the dis- 
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tortion dipole model by analogy with the shell model. It has the following 
form : 

exp( - aijr) 1 V,,(r) = - Zizje' + ["ij + 2yi - aj)  
r 

(ai + aj) Cij 
2r4 rb 

- -- 

where ai and aj are the free ion polarizabilities. Several assumptions were 
made by them in arriving at this function. They modified the original 
Rittner5* function for diatomic molecules. An 1-' term which arises from 
higher order perturbation theory has been dropped; this term is included 
implicitly in the shell model description.' The new term in Gij refers to 
second order energies which are overlap dependent. All of these assumptions 
can be tested by comparison with ab initio calculations for alkali halide 
systems. 

have performed conventional SCF M O  calculatjons on 
LiCl giving rise to a good representation of the LiCl potential curve and 
properties of the LiCl molecule. But these ab initio 2-body alkali halide 
potentials lead to completely unphysical lattice energies for the solids. In 
a perfect static lattice the electrostatic field at each lattice site is zero so 
that the dipolar induction term is zero. Bounds and Hinchcliffe6" report 
some unpublished work of Bounds and Klein who have obtained effective 
pair potentials in  the condensed phase by removing the induction term, 
E(r)/2r4, from the 2-body potentials for molecules; 3 is the mean polar- 
izability. Bounds and Hinchcliffe claim that these effective pair potentials 
yield reasonable values for the lattice energies and other static properties 
although they do not present supporting data. The unreliability of poten- 
tials for the alkali halide crystals from the studies of diatomic molecules is 
known'. ". 

Bounds et 

A2.2 Ions and crystals 

Very recently, Murrell et have estimated the many body contributions 
to the intermolecular potential for LiF clusters and crystals. They point out 
that by taking the same exponential dependence for Gij terms as well as H i j  
terms (representing first order exchange) in the distortion dipole function 
of Brumer and Karplu~, '~  a severe approximation is probably being made. 
They follow an alternative approach to second order terms which are overlap 
dependent; they calculate charge transfer states. In contrast to the induction 
energy there will be 4-body terms for the charge transfer energy. Contribu- 
tions to the many body energies from exchange and dispersion are not 
considered as they are expected to be negligible for ionic systems. 
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ION PAIR POTENTIALS FOR ALKALI HALIDES I07 

The approach of Murrell et al.53 to obtaining effective pair potentials for 
the solid does not involve diatomic alkali halide potentials and their cal- 
culations in the crystal environment are rather elegant. Calculations are 
made on a small number of ions contained within an inner zone at the centre 
of a finite lattice for which the Coulomb potential in the central region 
closely approximates the Coulomb potential in the unit cell of the infinite 
lattice. They find 1) that 3-body energies in the crystal are much smaller 
than for the isolated clusters and 2) that the charge transfer terms make an 
important contribution to the 3-body energies. An explicit functional form 
of the whole 3-body energy from ab  initio calculations has yet to be devised. 
They claim the addition of such a polarization function to the 2-body pair 
potentials should be both more accurate and also computationally cheaper 
than using the shell model because the number of dynamical variables is 
halved. Murrell has since suggested that this could be complemented by a 
small constant dipole moment term. It is difficult to make a direct comparison 
of these suggestions either with original work of Dick and Overhauserlo 
who envisaged charge transfer effects as an udditional term in the polar- 
ization or with the work of Verma and Singh52 who suggested that charge 
transfer made only a small modification to the dynamics. Without a 
functional form for the 3-body terms it is not possible to make an estimate 
of the relative computational cost. 
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